Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

نویسندگان

  • Antonella Managò
  • Katrin Anne Becker
  • Alexander Carpinteiro
  • Barbara Wilker
  • Matthias Soddemann
  • Aaron P. Seitz
  • Michael J. Edwards
  • Heike Grassmé
  • Ildiko Szabò
  • Erich Gulbins
چکیده

AIMS Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. RESULTS Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. INNOVATION These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. CONCLUSION These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation of thiols and modification of redox-sensitive signaling in human lung epithelial cells exposed to Pseudomonas pyocyanin.

The aim of this study was to examine the effects of pyocyanin exposure on mitochondrial GSH, other cellular thiols (thioredoxin-1, Trx-1), and oxidant-sensitive signaling pathways hypoxia inducible factor (HIF-1α) and heme oxygenase (HO-1) in A549 and HBE cell lines. A549 human type II alveolar epithelial cells and human bronchial epithelial (HBE) cells were treated with varying concentrations ...

متن کامل

Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis.

Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defecti...

متن کامل

Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.

Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neu...

متن کامل

TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species

Tumor necrosis factor (TNF) constitutes a critical host defense against tuberculosis, but its excess is also implicated in tuberculosis pathogenesis in zebrafish and humans. Using the zebrafish, we elucidate the pathways by which TNF mediates tuberculosis pathogenesis. TNF excess induces mitochondrial reactive oxygen species (ROS) in infected macrophages through RIP1-RIP3-dependent pathways. Wh...

متن کامل

Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice.

Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015